
Questions are higher-ordered: Solving the dilemma between uniqueness and mention-some
I propose a higher-ordered semantics of questions to address the following facts. Fact 1: singular-marked
questions require uniqueness; for instance, (2) expects that a unique boy left, cf. (1). Fact 2: a 3-question
(3) admits mention-some (MS) answers like (3a) (Groenendijk & Stokhof 1984). Fact 3: without an 3, a
wh-question with a collective/anti-distributive predicate (4) admits only the mention-all (MA) answer (4a).

(1) Which boys left? a.
√

w1: only a left. b.
√

w2: only a and b left.

(2) Which boy left? a.
√

w1: only a left. b. # w2: only a and b left.

(3) Who can chair the committee? (w: the committee can be chaired by a or b; co-chair is disallowed.)
a.
√

a can chair. b.
√

a or b can chair.

(4) Which boys are in the same team? (w: there are two teams, made up of ab and cd, respectively)
a.
√

ab are in the same team, and cd are .... b. # ab are .... c. # abcd are ....

Dayal (1996) adopts the H(amblin)-K(arttunen) semantics of questions and defines an ANSD-operator to
derive good answers from the H-denotation: ANSD(Q)(w) returns the unique strongest true answer of Q in
w and presupposes its existence. The strongest true answer is the true answer entailing all the true answers.

(5) ANSD(Q)(w) = ∃p ∈ Q[p(w)∧∀q ∈ Q[q(w)→ p⊆ q]].ι p ∈ Q[p(w)∧∀q ∈ Q[q(w)→ p⊆ q]]

Dayal captures Fact 1. The singular term boy ranges over only atomic items. The true answers of the
singular-marked question (2) in w1 and w2 are (6a) and (6b), respectively. The unique true answer in (6a)
is the strongest, while neither of the members in (6b) is the strongest. The presupposition of ANSD predicts
that (2) is defined in w1 but not in w2. In contrast, the plural term boys ranges over both atomic and sum
items; therefore the true answers of (1) in w2 also include L( j,a+b), which entails all the true answers.

(6) a.
√

w1 : {L( j,a)} b. #w2 : {L( j,a),L( j,b)} c.
√

w2 : {L( j,a),L( j,b), L( j,a+b)}

Nevertheless, Dayal cannot capture Fact 2-3. For (3) and (4), if their question denotation are {3C(x) :
x ∈ people} and {I(x) : x ∈ boys} respectively, they have no strongest true answer in w. To avoid predicting
a presupposition failure in (3-4), Dayal must let the answers closed under conjunction via a generalized
distributivity operator PART (Schwarzschild 1996), as in (7). This solution, however, leads to two problems.
First, it predicts that (3) primarily accepts only MA and thus has to attribute the acceptability of MS to
pragmatic factors (e.g. von Rooij 2004). Second, it incorrectly predicts that (8) admits distributive answers
like (8a); however, (8) disallows to distribute over four boys and accepts only answers in the form of (8b).

(7) [ANSD λ p [[which boys] λX [[C p] [[X PARTC] are in the same team]]]]

(8) Which four boys are in the same team? a. # ab and cd each are .... b.
√

abcd are ....

Fox (2013) defines a weaker ANSD to address Fact 2: ANSF(Q)(w) returns the set of maximally informative
(MaxI) true answers of Q in w, as schematized in (9). Each of the MaxI true answers counts as a good
answer. This analysis allows questions to have multiple good answers and to admit non-exhaustive answers.
Accordingly, both the MS answers of the 3-question (3), i.e. 3C(a) and 3C(b), are good answers.

(9) ANSF(Q)(w) = {p : w ∈ p ∈ Q∧∀q[w ∈ q ∈ Q→ q 6⊂ p]}
({p : p is a true answer of Q in w and is not asymmetrically entailed by any true answers of Q in w }

Nevertheless, the definition (9) predicts that (2) behaves exactly the same as (3) and fails to address Fact
1: the singular answers in (6b) are logically independent and thus are both MaxI. Moreover, Fox cannot
explaining Fact 3: depending on whether assuming the answers to be closed via distributivity, Fox either
predicts (8) to admit distributive answers like (8a), or predicts (4) to admit partial answers like (4b).
S-requirement To solve the dilemma between Fact 1-2, I argue that the uniqueness requirement comes
from the S(umpremum)-requirement: “Let Q = Which P f ?, D is an arbitrary subset of P s.t. all the answers in



{ f (x) : x∈D} are true in w. Then for Q being defined in w, the supremum of D (⊕D) must be a member of P.”
Accordingly, (2) is undefined in w2 since a+b 6∈ boy; in contrast, (1) is defined in w2, since a+b ∈ boys.

(10) If D = {x}, then ⊕D = x; if D = {x1,x2, ...,xn}, then ⊕D = x1+ x2+ ...+ xn Link (1983)

My proposal The S-requirement, however, cannot be checked under the H-K semantics: it is difficult for
an ANS-operator to retrieve the individuals inside the answers, especially in modalized contexts. Therefore,
I re-evaluate the question denotation s.t. its value is directly constrained by the S-requirement.

First, I assume that the LF of a question has a core constituent Q denoting a family of possible answer
sets, as schematized in (11). In each answer set, the wh-item quantifies over an individual set that satisfies
the S-requirement. Consider (1-b) for illustrations. Any subset of boys satisfies the S-requirement, thus the
Q of (1) contains all the subsets of the Hamblin denotation, as in (12a). In contrast, only singleton subsets
of boy satisfies the S-requirement, thus the Q of (2) is a family of singleton sets, as in (12b).

(11) For Which P f ?, Q = {{ f (x) : x ∈ D} : D⊆ P∧⊕D ∈ P}
(12) a. Q = {{L(x) : x ∈ D} : D⊆ boys∧⊕D ∈ boys}= {α : α ⊆ {L(x) : x ∈ boys}}

b. Q = {{L(x) : x ∈ D} : D⊆ boy∧⊕D ∈ boy}= {{L(x)} : x ∈ boy}
Next, I define a response-operator ℜ to derive good answers from Q: ℜ picks out the minimal “strongest

true answer set” in Q and presupposes its existence; every MaxI member of this set is a good answer.

(13) a. ℜ(Q)(w) = MIN[STR(Q)(w)], if MIN[STR(Q)(w)] exists; undefined otherwise.
b. STR(Q)(w) = {α : α ∈Q∧α(w)pw∧∀β ∈Q[β (w)pw→ α � β ]}
{α : α is in Q; α is point-wise true in w; α entails all the point-wise true answer sets of Q in w)
(i) α(w)pw iff ∀p ∈ α[p(w)] (ii) α � β iff ∀q ∈ β∃p ∈ α[p⇒ q]

Consider the plural-marked MA question (1) for an illustration. Every point-wise true set containing L(a+b)
is a strongest true set in w2, as list in (14). ℜ(Q)(w2) returns the minimal one {L(a+ b)}. Therefore, I
predict that (1) admits only the MA answer L(a+b).

(14) STR(Q)(w2) = {{L(a+b)},{L(a),L(a+b)},{L(a),L(a+b)},{L(a),L(b),L(a+b)}}

Fact 1: (15) and (16) illustrate the case of the singular-marked question (2) in w1 and w2, respectively: (2)
has a minimal strongest true answer set in w1 but not in w2, and thus (2) is only defined in w1. More generally
speaking, I predict that a question has a uniqueness requirement iff its Q consists of only singletons.

(15) a. set(s) true in w1: {L(a)} b. STR(Q)(w1)={{L(a)}} c. ℜ(Q)(w1)={L(a)}
(16) a. set(s) true in w2: {L(a)},{L(b)} b. STR(Q)(w2) = /0 c. ℜ(Q)(w2) is undefined

Fact 2: (17) illustrates the case of the 3-question (3) in w: (3) has a unique strongest true answer set, which
consists of the true MS answers. Based MaxI (Fox 2013), both of the MS answers are good answers.

(17) a. sets true in w: {3C(a)},{3C(b)},{3C(a),3C(b)} b. STR(Q)(w) = {{3C(a),3C(b)}}
Fact 3: I assume that a question always takes some form of distributivity; distributivity can come from either
the lexicon of the predicate, a VP-PART (18a), or a DP-PART (18b). With an anti-distributive predicate, (4)
and (8) must chose the DP-PART, as in (19) and (20), respectively. All the answer sets in (19) are closed
under conjunction; therefore (4) admits only MA. In (20), D as well as D′ can only be singletons of some
4-boys (e.g. a+b+ c+d); (8a) is not a possible answer for (8) since it requires D′ to be {a+b,c+d}.
(18) a. PARTVP = λ f .λx.Cov(C,x)∧∀y ∈C[ f (y)] b. PARTDP = λD.λ f .∀x ∈ D[ f (x)]

(19) Q = {{PARTDP(D′)(I) : D′ ⊆ D} : D⊆ boys∧⊕D ∈ boys}
(20) Q = {{PARTDP(D′)(I) : D′ ⊆ D} : D⊆ 4-boys∧⊕D ∈ 4-boys}= {{I(x)} : x ∈ 4-boys}
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